
1

Side-scrolling Video Games

Pong was one of the earliest commercially-successful video games. Pong was an electronic ping pong

game. Its success inspired other formats.

The arcade game, Defender, introduced a category of games in which a landscape scrolled past as the

player’s ship was used to defend the earth from mutants descending from the sky.

This type of game is known as a side-scrolling game because the landscape scrolls to the side, from right

to left. The popular Mario Brothers games are another example of the side-scrolling game format.

Creating a Scrolling Landscape

A side-scrolling game format can be emulated in Snap! In this sample game, a blimp is used to vacuum

up flowers as the landscape scrolls past. Once the basic principles are understood, the game mechanism

can be adapted to create other types of side-scrolling game.

A sprite that serves as a backdrop (shown on the left-hand side in the row of sprites below) is used to

create a landscape that scrolls past.

2

When the image of the landscape is first imported as the costume for the sprite, it is automatically scaled

by Snap! so that it exactly fills the screen.

The Set Size code block can be used to increase the size of the sprite’s costume so that it extends

beyond the sides of the screen. This expands the landscape so that it can scroll across the stage.

When the size of the costume is increased, only a portion of the sprite’s costume fits on the stage. The

other portions of the costume extend off stage.

The code block Set X to [X Position – 1] can be used to move the sprite to the left by one step. If this

instruction is placed in a loop, the landscape will appear to move from left to right.

3

The Draggable option for the sprite that is the backdrop should be unchecked, so that that the player does

not inadvertently drag the backdrop around the stage with the mouse.

The backdrop sprite should also be sent to the back layer of the stage so that all of the other sprites will be

in front of it.

Creating a Continuously Scrolling Landscape

If the landscape is repeatedly moved to the left, eventually the right edge of the landscape will be aligned

with the right edge of the screen. The default width of the stage is 240 steps wide. If the landscape is

twice as wide (i.e., 480 steps wide), the right edge of the landscape will be aligned with right edge of the

stage when the X position of the sprite is – 240.

To ensure a continuously scrolling backdrop, a test can be incorporated to check when the X position of

the sprite is less than “-240”. At that point, the position of the backdrop should be reset to move the

backdrop back to its beginning position again.

The numbers used in this example assume that the backdrop is twice the width of a stage that is 240 steps
wide. The specific numbers for the X position test will depend upon the size of the backdrop.

4

Once the X-position numbers required are tested and verified, the code blocks can be used to create a

Scroll Backdrop procedure that is initiated when the green Start flag is clicked.

When the green flag in the upper left-hand corner of the stage is clicked, all of the code blocks attached to

Green Flag blocks (such as the one in the illustration below) are executed.

The Green Flag blocks make it possible to start multiple procedures across different sprites at the same

time.

The Flower Collector

Once the scrolling backdrop procedure has been developed, a mechanism to collect flowers will be

required. This vehicle consists of a blimp with a nozzle that can be used to scoop up flowers that are

sucked into a collection bag at the rear of the vehicle. (The blimp is a sprite and the flowers are also

sprites.)

When the nozzle of the flower collector touches a flower, the flower is scooped up. A method is therefore

required to determine when the nozzle of the Flower Collector touches a flower. The nozzle of the Flower

Collector is gray. The script for the flower can therefore be used to detect when the flower has been

touched by the nozzle by checking to see if it has been touched by a gray object.

5

The Flower Collector sprite is moved with the mouse until its nozzle is touching a flower. At that point

the mouse button is released. When the flower is touched by a gray object (i.e., the gray nozzle) and the

mouse button is released, the flower disappears as it is vacuumed into the collection bag of the Flower

Collector. The Hide code block is used to hide the flower, causing it to disappear.

If a handful of flowers with similar scripts are scattered across the landscape, a startup procedure can be

used to show all of the flowers at the beginning of the game. Then each flower will disappear as it is

vacuumed up until all the flowers are collected.

Flowers

The flowers need to scroll along with the landscape. The same code block that causes the backdrop to

scroll, Set X to [X Position – 1], can also be incorporated into the script for each flower to cause the

flowers to scroll as well.

The When I Start as a Clone code block is used to spawn new flowers. Code blocks and procedures

attached to the When I Start as a Clone code block are created within the new flower clones.

In this example, when a clone of a flower is created, the Show code block causes the new clone to be

visible. The Scroll Flower procedure then causes the new flower to begin scrolling from left to right

along with the landscape and all of the other flowers.

6

Distribution of Code Blocks across Clones

Each sprite can have its own code blocks. When the green flag is clicked, the code blocks attached to each

code block begin to execute.

Simultaneous execution of multiple code blocks across different sprites is known as parallel processing

because several sets of computer instructions are being executed at the same time (i.e., in parallel).

Spawning New Flowers

The procedures described above can be used as the framework for a complete side-scrolling game.

However, the game is over when all of the flowers have been collected.

Most video games have methods of recreating new objects (flowers in this example) to enable the game to

continue indefinitely. In Snap!, the Clone code block can be used to create a clone of an object. In the

example below, the Clone instruction is used to randomly create a copy of the flower every five to ten

seconds.

This ensures that new flowers are generated as previously-created flowers are scooped up by the Flower

Collector.

7

When a sprite creates a clone of itself, the clone inherits all of the scripts that were in the original sprite.

The ability to create clones is a powerful capability. So that the clones do not build up, the Scroll

Flower until Collected procedure deletes the clone if it reaches the left side of the screen without

being collected.

Launching the Flower Collection Procedure

If the gray nozzle of the Flower Collector touches the flower, the flower tells the Flower Collector to

launch the Collect Flower procedure (described in the next section).

The Tell code block, found under the Control code block palette, provides a way for one sprite to tell

another sprite to implement an instruction.

The Launch code block causes the launched procedure to execute in parallel with the other scripts rather

than waiting until the procedure is completed before returning control to the originating script. In this

instance, use of Launch keeps the flower collection process from interfering with the timing involved in

creation of new clones of the flower.

After the clone initiates the flower collection process when it is touched, there is no longer a need for the

clone. Therefore, the last code block in the sequence is the instruction to Delete This Clone.

8

Adding Animation and Sounds

Sounds and animation are a significant part of a video game.

When the Flower Collector receives a message from a cloned flower to execute the Collect Flower

procedure, it cycles through a sequence of three costumes, labeled Flower Collector A, Flower Collector

B, and Flower Collector C. When the clone tells the Flower Collector to begin the sequence, it first shifts

to the Flower Collector B costume. The nozzle size is expanded in this costume. A popping sound is also

played as the flower is plucked.

The Flower Collector then shifts to the Flower Collector B costume. The collection bag expands in this

costume, as the flower (presumably) enters the bag. A whooshing sound is also played as the flower is

sucked into the bag. The Flower Collector then reverts to its original costume.

The code blocks used to implement these steps in the Collect Flower procedure are shown below.

Within the Collect Flower procedure, the switch to the Flower Collector C costume until the sound

“Pop” is completed. However, because the clone script used the Launch code block to launch the

Collect Flower procedure, playing the sound does not hold up or impede execution of any other scripts

that take place outside of the Collect Flower procedure.

9

Scoring

Most games have scores. To add a scoring mechanism to the game, create a variable named Score for

each flower. When each Score variable is created, select For This Sprite Only as an option. This will

make it possible to track how many of each type of flower have been collected.

The Score variable for each flower is initialized (i.e., set to 0) when the green flag is clicked.

When the nozzle of the Flower Collector touches the flower and the flower is collected, an additional

code block tells the parent flower to increase the Score variable by 1. (The My Parent code block is

found in the Sensing code palette.)

This code block is added to the Scroll Flower procedure.

10

This addition increases the value of the Score variable by 1 each time a flower is collected.

There are many other variations that could be used to enhance the score process. The flowers could be

assigned different point values that are tracked as the flowers are collected. Mixing in weeds among the

flowers would provide opportunities to lose points as well as gain them.

The scroll speed could be increased as the player progresses through various levels to make the game

more challenging. This would enable players to attempt to attain as many levels as possible.

